Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control.

نویسندگان

  • Valentina Resta
  • Elena Novelli
  • Francesco Di Virgilio
  • Lucia Galli-Resta
چکیده

The precise assembly of neuronal circuits requires that the correct number of pre- and postsynaptic neurons form synaptic connections. Neuronal cell number is thus tightly controlled by cell death during development. Investigating the regulation of cell number in the retina we found an ATP gated mechanism of neuronal death control. By degrading endogenous extracellular ATP or blocking the P2X(7) ATP receptors we found that endogenous extracellular ATP triggers the death of retinal cholinergic neurons during normal development. ATP-induced death eliminates cholinergic cells too close to one another, thereby controlling the total number, the local density and the regular spacing of these neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density

Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...

متن کامل

Effects of diazoxide on Aβ1-42-induced expression of the NR2B subunit in cultured cholinergic neurons.

The accumulation of amyloid-β protein (Aβ) is significant in the pathogenesis of Alzheimer's disease. Several previous studies indicate that the NR2B‑containing N‑methyl‑D‑aspartate receptors are critically involved in the Aβ mediated disruption of neuronal function. Diazoxide (DZ), a highly selective drug capable of opening mitochondrial ATP‑sensitive potassium channels, has neuroprotective ef...

متن کامل

SERPINA3K Prevents Oxidative Stress Induced Necrotic Cell Death by Inhibiting Calcium Overload

BACKGROUND SERPINA3K, an extracellular serine proteinase inhibitor (serpin), has been shown to have decreased levels in the retinas of diabetic rats, which may contribute to diabetic retinopathy. The function of SERPINA3K in the retina has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS The present study identified a novel function of SERPINA3K, i.e. it protects retinal cells against ox...

متن کامل

Paracrine effect of carbon monoxide: astrocytes promote neuroprotection via purinergic signaling

Carbon monoxide neuroprotective role has been studied in a cell autonomous mode. Herein a new concept is disclosed: CO affects astrocyte-neuron communication in a paracrine manner towards neuroprotection. Neuronal survival was assessed whenever co-cultured with astrocytes pre-treated or not with CO. CO-pre-treated astrocytes reduced neuronal cell death and the cellular mechanisms were pursued, ...

متن کامل

Adenosine and ATP Link PCO2 to Cortical Excitability via pH

In addition to affecting respiration and vascular tone, deviations from normal CO(2) alter pH, consciousness, and seizure propensity. Outside the brainstem, however, the mechanisms by which CO(2) levels modify neuronal function are unknown. In the hippocampal slice preparation, increasing CO(2), and thus decreasing pH, increased the extracellular concentration of the endogenous neuromodulator a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 132 12  شماره 

صفحات  -

تاریخ انتشار 2005